Monthly Archives: January 2017

Mathematical Similarity Summary

Figures are mathematically similar if they share a scale factor/ratio, and also they have to have congruent corresponding angles. This is true because if there is a triangle, and both have side lengths that are related by a scale factor but don’t have angles that are congruent, the figure is not similar. In order to achieve similarity, both of these reasons have to be true.

True or False…

Any two rectangles are similar:

This is true because all rectangles’ corresponding angles are congruent. If the corresponding angles are congruent, then the shape is similar, which means that the ratio/ scale factor are the same.

Any two equilateral triangles are similar:

This is true because all equilateral triangles’ corresponding angles are congruent.  If the corresponding angles are congruent, then the shape is similar, which means that the ratio/ scale factor are the same.

My eye drawing

image1

The name of this piece is my eye. I created this work of art using our value chart and a photo of my eye. We used the value chart to know what part of the eye was which value. My favorite part is the shading around the eye. If I would change something about it, it would be the pupil. It is supposed to be angled like I am looking away, which it does from far away, but if you look at closely it doesn’t look like how I wanted it to. While making it I was surprised how you could use different pencils to make it look so realistic.